Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 911
2.
J Neurol Sci ; 460: 122985, 2024 May 15.
Article En | MEDLINE | ID: mdl-38581741

OBJECTIVE: To investigate hypothalamic atrophy and its clinical correlates in multiple system atrophy (MSA) in-vivo. BACKGROUND: MSA is characterized by autonomic dysfunction and parkinsonian/cerebellar manifestations. The hypothalamus regulates autonomic and homeostatic functions and is also involved in memory and learning processes. METHODS: 11 MSA, 18 Parkinson's Disease (PD) and 18 Healthy Controls (HC) were included in this study. A validated and automated hypothalamic segmentation tool was applied to 3D-T1-weighted images acquired on a 3T MRI scanner. MSA hypothalamic volumes were compared to those of PD and HC. Furthermore, the association between hypothalamic volumes and scores of autonomic, depressive, sleep and cognitive manifestations were investigated. RESULTS: Posterior hypothalamus volume was reduced in MSA compared to controls (t = 2.105, p = 0.041) and PD (t = 2.055, p = 0.046). Total hypothalamus showed a trend towards a reduction in MSA vs controls (t = 1.676, p = 0.101). Reduced posterior hypothalamus volume correlated with worse MoCA scores in the parkinsonian (MSA + PD) group and in each group separately, but not with autonomic, sleep, or depression scores. CONCLUSIONS: In-vivo structural hypothalamic involvement may be present in MSA. Reduced posterior hypothalamus volume, which includes the mammillary bodies and lateral hypothalamus, is associated with worse cognitive functioning. Larger studies on hypothalamic involvement in MSA and its clinical correlates are needed.


Hypothalamus , Magnetic Resonance Imaging , Multiple System Atrophy , Humans , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Multiple System Atrophy/physiopathology , Male , Female , Hypothalamus/diagnostic imaging , Hypothalamus/pathology , Hypothalamus/physiopathology , Aged , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/physiopathology
3.
JAMA ; 331(15): 1298-1306, 2024 04 16.
Article En | MEDLINE | ID: mdl-38506839

Importance: Finding a reliable diagnostic biomarker for the disorders collectively known as synucleinopathies (Parkinson disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA], and pure autonomic failure [PAF]) is an urgent unmet need. Immunohistochemical detection of cutaneous phosphorylated α-synuclein may be a sensitive and specific clinical test for the diagnosis of synucleinopathies. Objective: To evaluate the positivity rate of cutaneous α-synuclein deposition in patients with PD, DLB, MSA, and PAF. Design, Setting, and Participants: This blinded, 30-site, cross-sectional study of academic and community-based neurology practices conducted from February 2021 through March 2023 included patients aged 40 to 99 years with a clinical diagnosis of PD, DLB, MSA, or PAF based on clinical consensus criteria and confirmed by an expert review panel and control participants aged 40 to 99 years with no history of examination findings or symptoms suggestive of a synucleinopathy or neurodegenerative disease. All participants completed detailed neurologic examinations and disease-specific questionnaires and underwent skin biopsy for detection of phosphorylated α-synuclein. An expert review panel blinded to pathologic data determined the final participant diagnosis. Exposure: Skin biopsy for detection of phosphorylated α-synuclein. Main Outcomes: Rates of detection of cutaneous α-synuclein in patients with PD, MSA, DLB, and PAF and controls without synucleinopathy. Results: Of 428 enrolled participants, 343 were included in the primary analysis (mean [SD] age, 69.5 [9.1] years; 175 [51.0%] male); 223 met the consensus criteria for a synucleinopathy and 120 met criteria as controls after expert panel review. The proportions of individuals with cutaneous phosphorylated α-synuclein detected by skin biopsy were 92.7% (89 of 96) with PD, 98.2% (54 of 55) with MSA, 96.0% (48 of 50) with DLB, and 100% (22 of 22) with PAF; 3.3% (4 of 120) of controls had cutaneous phosphorylated α-synuclein detected. Conclusions and Relevance: In this cross-sectional study, a high proportion of individuals meeting clinical consensus criteria for PD, DLB, MSA, and PAF had phosphorylated α-synuclein detected by skin biopsy. Further research is needed in unselected clinical populations to externally validate the findings and fully characterize the potential role of skin biopsy detection of phosphorylated α-synuclein in clinical care.


Skin , Synucleinopathies , alpha-Synuclein , Aged , Female , Humans , Male , alpha-Synuclein/analysis , Biopsy , Cross-Sectional Studies , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , Multiple System Atrophy/diagnosis , Multiple System Atrophy/pathology , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Synucleinopathies/diagnosis , Synucleinopathies/pathology , Phosphorylation , Skin/chemistry , Skin/pathology , Pure Autonomic Failure/diagnosis , Pure Autonomic Failure/pathology , Reproducibility of Results , Adult , Middle Aged , Aged, 80 and over , Single-Blind Method , Prospective Studies
4.
Mov Disord ; 39(4): 723-728, 2024 Apr.
Article En | MEDLINE | ID: mdl-38357858

BACKGROUND: The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS: Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS: STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS: These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Inclusion Bodies , Multiple System Atrophy , Neurons , alpha-Synuclein , Humans , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , alpha-Synuclein/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/metabolism , Neurons/metabolism , Neurons/pathology , Female , Aged , Male , Middle Aged , Brain/pathology , Brain/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Oligodendroglia/pathology , Oligodendroglia/metabolism , Microscopy/methods
5.
Acta Neuropathol Commun ; 12(1): 11, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238869

Multiple system atrophy (MSA) is a rare and fatal synucleinopathy characterized by insoluble alpha-synuclein (α-syn) cytoplasmic inclusions located within oligodendroglia. Neuroinflammation, demyelination, and neurodegeneration are correlated with areas of glia cytoplasmic inclusions (GCI) pathology, however it is not known what specifically drives disease pathogenesis. Recent studies have shown that disease pathologies found in post-mortem tissue from MSA patients can be modeled in rodents via a modified AAV overexpressing α-syn, Olig001-SYN, which has a 95% tropism for oligodendrocytes. In the Olig001-SYN mouse model, CD4+ T cells have been shown to drive neuroinflammation and demyelination, however the mechanism by which this occurs remains unclear. In this study we use genetic and pharmacological approaches in the Olig001-SYN model of MSA to show that the pro-inflammatory cytokine interferon gamma (IFNγ) drives neuroinflammation, demyelination, and neurodegeneration. Furthermore, using an IFNγ reporter mouse, we found that infiltrating CD4+ T cells were the primary producers of IFNγ in response to α-syn overexpression in oligodendrocytes. Results from these studies indicate that IFNγ expression from CD4+ T cells drives α-syn-mediated neuroinflammation, demyelination, and neurodegeneration. These results indicate that targeting IFNγ expression may be a potential disease modifying therapeutic strategy for MSA.


Demyelinating Diseases , Multiple System Atrophy , Synucleinopathies , Animals , Humans , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Interferon-gamma/metabolism , Multiple System Atrophy/pathology , Neuroinflammatory Diseases , Oligodendroglia/pathology , Synucleinopathies/pathology
6.
Acta Neuropathol Commun ; 12(1): 1, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167307

The growing recognition of a dichotomous role of astrocytes in neurodegenerative processes has heightened the need for unraveling distinct astrocytic subtypes in neurological disorders. In multiple system atrophy (MSA), a rare, rapidly progressing atypical Parkinsonian disease characterized by increased astrocyte reactivity. However the specific contribution of astrocyte subtypes to neuropathology remains elusive. Hence, we first set out to profile glial fibrillary acidic protein levels in astrocytes across the human post mortem motor cortex, putamen, and substantia nigra of MSA patients and observed an overall profound astrocytic response. Matching the post mortem human findings, a similar astrocytic phenotype was present in a transgenic MSA mouse model. Notably, MSA mice exhibited a decreased expression of the glutamate transporter 1 and glutamate aspartate transporter in the basal ganglia, but not the motor cortex. We developed an optimized astrocyte isolation protocol based on magnetic-activated cell sorting via ATPase Na+/K+ transporting subunit beta 2 and profiled the transcriptomic landscape of striatal and cortical astrocytes in transgenic MSA mice. The gene expression profile of astrocytes in the motor cortex displayed an anti-inflammatory signature with increased oligodendroglial and pro-myelinogenic expression pattern. In contrast, striatal astrocytes were defined by elevated pro-inflammatory transcripts accompanied by dysregulated genes involved in homeostatic functions for lipid and calcium metabolism. These findings provide new insights into a region-dependent, dichotomous astrocytic response-potentially beneficial in the cortex and harmful in the striatum-in MSA suggesting a differential role of astrocytes in MSA-related neurodegenerative processes.


Multiple System Atrophy , Parkinsonian Disorders , Humans , Mice , Animals , Multiple System Atrophy/pathology , Astrocytes/metabolism , Parkinsonian Disorders/pathology , Corpus Striatum/metabolism , Substantia Nigra/metabolism , Mice, Transgenic
7.
Neurosci Lett ; 822: 137642, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38228218

Multiple system atrophy (MSA) is a progressive and sporadic neurodegenerative disorder characterized by the histological appearance of glial cytoplasmic inclusions primarily composed of α-synuclein. Recently, complement-mediated neuroinflammation has been proposed as a key factor in the pathogenesis of numerous neurodegenerative disorders. We conducted immunohistochemical/immunofluorescent assays targeting a number of complements to explore the role of complements in MSA pathogenesis using brain samples from deceased patients and controls. Complement deposition was notably increased in the cerebral vasculature and myelin sheath in the MSA brains. Furthermore, fibrinogen leakage resulting from the disruption of the blood-brain barrier (BBB) was observed, along with the presence of C1q-positive microglia clusters surrounding the MSA brain vessels. These immunohistochemical/immunofluorescent findings suggest that complement activation and BBB disruption play critical roles in MSA progression.


Multiple System Atrophy , Humans , Multiple System Atrophy/pathology , Blood-Brain Barrier/metabolism , alpha-Synuclein/metabolism , Brain/metabolism , Microglia/metabolism , Complement Activation
8.
Eur J Neurol ; 31(3): e16169, 2024 Mar.
Article En | MEDLINE | ID: mdl-38085264

BACKGROUND AND PURPOSE: Pure autonomic failure (PAF) is a rare progressive neurodegenerative disease characterized by neurogenic orthostatic hypotension at presentation, without other neurological abnormalities. Some patients may develop other central neurological features indicative of multiple system atrophy or a Lewy body disorder. There are currently no biomarkers to assess possible central nervous system involvement in probable PAF at an early stage. A possibility is to evaluate the nigrostriatal dopaminergic degeneration by imaging of dopamine transporter with DaTscan brain imaging. The objective was to evaluate subclinical central nervous system involvement using DaTscan in PAF. METHODS: We retreospectively reviewed pure autonomic failure patients who were evaluated at the Autonomic Unit between January 2015 and August 2021 and underwent comprehensive autonomic assessment, neurological examination, brain magnetic resonance imaging and DaTscan imaging. DaTscan imaging was performed if patients presented with atypical features which did not meet the criteria for Parkinson's disease or multiple system atrophy or other atypical parkinsonism. RESULTS: In this cohort, the median age was 49.5 years at disease onset, 57.5 years at presentation, and the median disease duration was 7.5 years. Five of 10 patients had an abnormal DaTscan without neurological features meeting the criteria of an alternative diagnosis. Patients with abnormal DaTscan were predominantly males, had shorter disease duration and had more severe genitourinary symptoms. DISCUSSION: Degeneration of nigrostriatal dopaminergic neurons measured using DaTscan imaging can present in patients with PAF without concurrent signs indicating progression to widespread α-synucleinopathy. It is advocated that DaTscan imaging should be considered as part of the workup of patients with emerging autonomic failure who are considered to have PAF.


Autonomic Nervous System Diseases , Multiple System Atrophy , Pure Autonomic Failure , Male , Humans , Middle Aged , Female , Pure Autonomic Failure/diagnostic imaging , Pure Autonomic Failure/pathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Dopamine Plasma Membrane Transport Proteins , Dopaminergic Imaging , Brain/diagnostic imaging , Brain/pathology , Biomarkers , Autonomic Nervous System Diseases/diagnostic imaging , Autonomic Nervous System Diseases/etiology
9.
Acta Pharmacol Sin ; 45(1): 66-75, 2024 Jan.
Article En | MEDLINE | ID: mdl-37605049

Multiple system atrophy (MSA) is a rare, fatal neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) in glial cells, leading to the formation of glial cytoplasmic inclusions (GCI). We previous found that glial fatty acid-binding protein 7 (FABP7) played a crucial role in alpha-synuclein (αSyn) aggregation and toxicity in oligodendrocytes, inhibition of FABP7 by a specific inhibitor MF 6 reduced αSyn aggregation and enhanced cell viability in cultured cell lines and mouse oligodendrocyte progenitor cells. In this study we investigated whether MF 6 ameliorated αSyn-associated pathological processes in PLP-hαSyn transgenic mice (PLP-αSyn mice), a wildly used MSA mouse model with overexpressing αSyn in oligodendroglia under the proteolipid protein (PLP) promoter. PLP-αSyn mice were orally administered MF6 (0.1, 1 mg ·kg-1 ·d-1) for 32 days starting from the age of 6 months. We showed that oral administration of MF 6 significantly improved motor function assessed in a pole test, and reduced αSyn aggregation levels in both cerebellum and basal ganglia of PLP-αSyn mice. Moreover, MF 6 administration decreased oxidative stress and inflammation levels, and improved myelin levels and Purkinje neuron morphology in the cerebellum. By using mouse brain tissue slices and αSyn aggregates-treated KG-1C cells, we demonstrated that MF 6 reduced αSyn propagation to Purkinje neurons and oligodendrocytes through regulating endocytosis. Overall, these results suggest that MF 6 improves cerebellar functions in MSA by inhibiting αSyn aggregation and propagation. We conclude that MF 6 is a promising compound that warrants further development for the treatment of MSA.


Multiple System Atrophy , Mice , Animals , Multiple System Atrophy/drug therapy , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , alpha-Synuclein/metabolism , Fatty Acid-Binding Protein 7/metabolism , Mice, Transgenic , Oligodendroglia/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal
10.
Mov Disord ; 39(1): 119-129, 2024 Jan.
Article En | MEDLINE | ID: mdl-37933745

OBJECTIVE: To determine the rates of brain atrophy progression in vivo in patients with multiple system atrophy (MSA). BACKGROUND: Surrogate biomarkers of disease progression are a major unmet need in MSA. Small-scale longitudinal studies in patients with MSA using magnetic resonance imaging (MRI) to assess progression of brain atrophy have produced inconsistent results. In recent years, novel MRI post-processing methods have been developed enabling reliable quantification of brain atrophy in an automated fashion. METHODS: Serial 3D-T1-weighted MRI assessments (baseline and after 1 year of follow-up) of 43 patients with MSA were analyzed and compared to a cohort of early-stage Parkinson's disease (PD) patients and healthy controls (HC). FreeSurfer's longitudinal analysis stream was used to determine the brain atrophy rates in an observer-independent fashion. RESULTS: Mean ages at baseline were 64.4 ± 8.3, 60.0 ± 7.5, and 59.8 ± 9.2 years in MSA, PD patients and HC, respectively. A mean disease duration at baseline of 4.1 ± 2.5 years in MSA patients and 2.3 ± 1.4 years in PD patients was observed. Brain regions chiefly affected by MSA pathology showed progressive atrophy with annual rates of atrophy for the cerebellar cortex, cerebellar white matter, pons, and putamen of -4.24 ± 6.8%, -8.22 ± 8.8%, -4.67 ± 4.9%, and - 4.25 ± 4.9%, respectively. Similar to HC, atrophy rates in PD patients were minimal with values of -0.41% ± 1.8%, -1.47% ± 4.1%, -0.04% ± 1.8%, and -1.54% ± 2.2% for cerebellar cortex, cerebellar white matter, pons, and putamen, respectively. CONCLUSIONS: Patients with MSA show significant brain volume loss over 12 months, and cerebellar, pontine, and putaminal volumes were the most sensitive to change in mid-stage disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/pathology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Atrophy/pathology , Diagnosis, Differential
11.
Brain Pathol ; 34(1): e13210, 2024 01.
Article En | MEDLINE | ID: mdl-37652560

This study investigated the molecular spectrum of amyloid-beta (Aß) in neurodegenerative diseases beyond Alzheimer's disease (AD). We analyzed Aß deposition in the temporal cortex and striatum in 116 autopsies, including Lewy body disease (LBD; N = 51), multiple system atrophy (MSA; N = 10), frontotemporal lobar degeneration-TDP-43 (FTLD-TDP; N = 16), and progressive supranuclear palsy (PSP; N = 39). The LBD group exhibited the most Aß deposition in the temporal cortex and striatum (90/76%, respectively), followed by PSP (69/28%), FTLD-TDP (50/25%), and the MSA group (50/10%). We conducted immunohistochemical analysis using antibodies targeting eight Aß epitopes in the LBD and PSP groups. Immunohistochemical findings were evaluated semi-quantitatively and quantitatively using digital pathology. Females with LBD exhibited significantly more severe Aß deposition, particularly Aß42 and Aß43 , along with significantly more severe tau pathology. Furthermore, a quantitative analysis of all Aß peptides in the LBD group revealed an association with the APOE-ε4 genotypes. No significant differences were observed between males and females in the PSP group. Finally, we compared striatal Aß deposition in cases with LBD (N = 15), AD without α-synuclein pathology (N = 6), and PSP (N = 5). There were no differences in the pan-Aß antibody (6F/3D)-immunolabeled deposition burden among the three groups, but the deposition burden of peptides with high aggregation capacity, especially Aß43 , was significantly higher in the AD and LBD groups than in the PSP group. Furthermore, considerable heterogeneity was observed in the composition of Aß peptides on a case-by-case basis in the AD and LBD groups, whereas it was relatively uniform in the PSP group. Cluster analysis further supported these findings. Our data suggest that the type of concomitant proteinopathies influences the spectrum of Aß deposition, impacted also by sex and APOE genotypes.


Alzheimer Disease , Frontotemporal Dementia , Lewy Body Disease , Multiple System Atrophy , Male , Female , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , tau Proteins , Lewy Body Disease/pathology , Amyloid beta-Peptides , Multiple System Atrophy/pathology , Apolipoproteins E/genetics
12.
Neurologia (Engl Ed) ; 38(9): 609-616, 2023.
Article En | MEDLINE | ID: mdl-37996211

BACKGROUND AND OBJECTIVE: Multiple system atrophy is a rare and fatal neurodegenerative disorder, characterized by autonomic dysfunction in association with either parkinsonism or cerebellar signs. The pathologic hallmark is the presence of alpha-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Clinically, it may be difficult to distinguish form other parkinsonisms or ataxias, particularly in the early stages of the disease. In this case series we aim to describe in detail the features of MSA patients. MATERIAL AND METHODS: Unified MSA Rating Scale (UMSARS) score, structural and functional imaging and cardiovascular autonomic testing, are summarized since early stages of the disease. RESULTS: UMSARS proved to be useful to perform a follow-up being longitudinal examination essential to stratify risk of poor outcome. Neuropathological diagnosis showed an overlap between parkinsonian and cerebellar subtypes, with some peculiarities that could help to distinguish from other subtypes. CONCLUSION: A better description of MSA features with standardized test confirmed by means of neuropathological studies could help to increase sensitivity.


Autonomic Nervous System Diseases , Multiple System Atrophy , Parkinsonian Disorders , Humans , Multiple System Atrophy/diagnosis , Multiple System Atrophy/pathology , Cerebellum/diagnostic imaging , Cerebellum/pathology , Ataxia
13.
Biomol NMR Assign ; 17(2): 281-286, 2023 12.
Article En | MEDLINE | ID: mdl-37919529

Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.


Lewy Body Disease , Multiple System Atrophy , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Lewy Body Disease/pathology , Nuclear Magnetic Resonance, Biomolecular , Parkinson Disease/metabolism , Parkinson Disease/pathology , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology
14.
Neurology ; 101(24): e2460-e2471, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37816641

BACKGROUND AND OBJECTIVE: The second consensus criteria in 2008 have been used in diagnosing multiple system atrophy (MSA). The International Parkinson and Movement Disorder Society (MDS) proposed new diagnostic criteria for MSA in 2022. This study aimed to compare the diagnostic accuracy between these 2 criteria and validate the clinical utility of the newly proposed criteria for MSA. METHODS: We conducted a retrospective autopsy cohort study of consecutive patients with a clinical or pathologic diagnosis of MSA from the Mayo Clinic brain bank between 1998 and 2021. We studied 352 patients (250 pathologically diagnosed MSA and 102 non-MSA); MDS criteria and the second consensus criteria were applied. The sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic curves were compared between these criteria. Comparison was conducted between clinical subtypes and among clinically challenging cases (those with different clinical diagnoses or those with suspected but undiagnosed MSA before death). We also used machine learning algorithm, eXtreme Gradient Boosting, to identify clinical features contributing diagnostic performance. RESULTS: The sensitivity and specificity of clinically established and probable MSA by the MDS criteria were 16% and 99% and 64% and 74%, respectively. The sensitivity and specificity of probable MSA and possible MSA by the second consensus criteria were 72% and 52% and 93% and 21%, respectively. The AUC of MDS clinically probable MSA was the highest (0.69). The diagnostic performance did not differ between clinical subtypes. In clinically challenging cases, MDS clinically established MSA maintained high specificity and MDS clinically probable MSA demonstrated the highest AUC (0.62). MRI findings contributed to high specificity. In addition, combining core clinical features with 2 or more from any of the 13 supporting features and the absence of exclusion criteria also yielded high specificity. Among supporting features, rapid progression was most important for predicting MSA pathology. DISCUSSION: The MDS criteria showed high specificity with clinically established MSA and moderate sensitivity and specificity with clinically probable MSA. The observation that high specificity could be achieved with clinical features alone suggests that MSA diagnosis with high specificity is possible even in areas where MRI is not readily available.


Multiple System Atrophy , Humans , Multiple System Atrophy/diagnosis , Multiple System Atrophy/pathology , Cohort Studies , Retrospective Studies , Brain/diagnostic imaging , Brain/pathology , Sensitivity and Specificity
15.
Neuropathol Appl Neurobiol ; 49(6): e12941, 2023 Dec.
Article En | MEDLINE | ID: mdl-37812040

Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.


Cerebellar Ataxia , Multiple System Atrophy , Neocortex , Parkinsonian Disorders , Humans , Multiple System Atrophy/pathology , alpha-Synuclein/metabolism , Neocortex/pathology
16.
J Neurol Sci ; 454: 120821, 2023 11 15.
Article En | MEDLINE | ID: mdl-37832378

OBJECTIVE: Midbrain atrophy is considered specific to progressive supranuclear palsy (PSP) compared with Parkinson's disease (PD). We aimed to determine how often midbrain atrophy is observed in pathologically diagnosed Lewy body disease (LBD) and clinically diagnosed PD and the robustness of midbrain atrophy assessed by the One-Line Method previously developed for the diagnosis of PSP. METHODS: We studied two separate cohorts with MRI: the first pathologically diagnosed cohort consisted of patients with LBD (n = 13), PSP (n = 6), multiple system atrophy (MSA, n = 7), and corticobasal degeneration (CBD, n = 2); the second cohort consisted of patients with PD (n = 122). Midbrain length was measured using the One-Line Method and FreeSurfer estimated volumes of the subcortical nuclei. RESULTS: The area under the curve of midbrain length differentiating PSP from LBD, MSA, and CBD in a pathologically diagnosed cohort was 0.91. Midbrain length with cut-off values of 10.5 mm and 9.5 mm had a sensitivity of 100% and 67% and a specificity of 68% and 96%, respectively. In the first cohort, 7.7% and 23.0% of patients with LBD showed midbrain lengths <9.5 mm and 10.5 mm, respectively, and in the second cohort, 4.9% and 19.7% showed midbrain lengths <9.5 mm and 10.5 mm, respectively. INTERPRETATION: Midbrain length measured using the One-Line Method is helpful in the diagnosis of PSP. Some cases of pathologically diagnosed LBD and clinically diagnosed PD present with midbrain atrophy.


Lewy Body Disease , Multiple System Atrophy , Parkinson Disease , Supranuclear Palsy, Progressive , Humans , Parkinson Disease/diagnosis , Parkinson Disease/diagnostic imaging , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Supranuclear Palsy, Progressive/diagnostic imaging , Mesencephalon/diagnostic imaging , Mesencephalon/pathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Magnetic Resonance Imaging/methods , Diagnosis, Differential , Atrophy/pathology
18.
J Neural Transm (Vienna) ; 130(10): 1231-1240, 2023 10.
Article En | MEDLINE | ID: mdl-37581647

Cognitive impairment (CI), previously considered as a non-supporting feature of multiple system atrophy (MSA), according to the second consensus criteria, is not uncommon in this neurodegenerative disorder that is clinically characterized by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, motor and cerebellar signs. Mild cognitive impairment (MCI), a risk factor for dementia, has been reported in up to 44% of MSA patients, with predominant impairment of executive functions/attention, visuospatial and verbal deficits, and a variety of non-cognitive and neuropsychiatric symptoms. Despite changing concept of CI in this synucleinopathy, the underlying pathophysiological mechanisms remain controversial. Recent neuroimaging studies revealed volume reduction in the left temporal gyrus, and in the dopaminergic nucleus accumbens, while other morphometric studies did not find any gray matter atrophy, in particular in the frontal cortex. Functional analyses detected decreased functional connectivity in the left parietal lobe, bilateral cuneus, left precuneus, limbic structures, and cerebello-cerebral circuit, suggesting that structural and functional changes in the subcortical limbic structures and disrupted cerebello-cerebral networks may be associated with early cognitive decline in MSA. Whereas moderate to severe CI in MSA in addition to prefrontal-striatal degeneration is frequently associated with cortical Alzheimer and Lewy co-pathologies, neuropathological studies of the MCI stage of MSA are unfortunately not available. In view of the limited structural and functional findings in MSA cases with MCI, further neuroimaging and neuropathological studies are warranted in order to better elucidate its pathophysiological mechanisms and to develop validated biomarkers as basis for early diagnosis and future adequate treatment modalities in order to prevent progression of this debilitating disorder.


Cognitive Dysfunction , Multiple System Atrophy , Humans , Multiple System Atrophy/complications , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Neuroimaging/methods , Gray Matter/pathology , Atrophy/pathology , Brain/pathology
19.
Behav Brain Res ; 452: 114574, 2023 08 24.
Article En | MEDLINE | ID: mdl-37423320

Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.


Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Humans , Synucleinopathies/metabolism , Synucleinopathies/pathology , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Brain/metabolism , Neurons/metabolism
20.
Mov Disord ; 38(10): 1956-1961, 2023 10.
Article En | MEDLINE | ID: mdl-37497669

BACKGROUND: Glycoprotein nonmetastatic melanoma protein B (GPNMB) has been demonstrated to mediate pathogenicity in Parkinson's disease (PD) through interactions with α-synuclein, and plasma GPNMB tended to be a novel biomarker for PD. OBJECTIVE: The goal of this study was to investigate whether plasma GPNMB could act as a potential biomarker for the clinical diagnosis and severity monitoring of multiple system atrophy (MSA), another typical synucleinopathy. METHODS: Plasma GPNMB levels in patients with MSA, patients with PD, and healthy control subjects (HCs) were quantified using enzyme-linked immunosorbent assays. RESULTS: A total of 204 patients with MSA, 65 patients with PD, and 207 HCs were enrolled. The plasma GPNMB levels in patients with MSA were similar to those in HCs (P = 0.251) but were significantly lower than those in patients with PD (P = 0.003). Moreover, there was no significant correlation detected between the plasma GPNMB levels and disease severity scores of patients with MSA. CONCLUSIONS: No evidence was detected for the biomarker potential of plasma GPNMB in MSA. © 2023 International Parkinson and Movement Disorder Society.


Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/pathology , East Asian People , Parkinson Disease/diagnosis , Asian People , Biomarkers , Membrane Glycoproteins
...